JVM知识总结
内容整理自JavaGuide
Java内存区域
基本问题
- 介绍下 Java 内存区域(运行时数据区)
- Java 对象的创建过程(五步,建议能默写出来并且要知道每一步虚拟机做了什么)
- 对象的访问定位的两种方式(句柄和直接指针两种方式)
扩展问题:
- String 类和常量池
- 8 种基本类型的包装类和常量池
概述
对于 Java 程序员来说,在虚拟机自动内存管理机制下,不再需要像 C/C++程序开发程序员这样为每一个 new 操作去写对应的 delete/free 操作,不容易出现内存泄漏和内存溢出问题。正是因为 Java 程序员把内存控制权利交给 Java 虚拟机,一旦出现内存泄漏和溢出方面的问题,如果不了解虚拟机是怎样使用内存的,那么排查错误将会是一个非常艰巨的任务。
运行时数据区域
Java 虚拟机在执行 Java 程序的过程中会把它管理的内存划分成若干个不同的数据区域。JDK 1.8 和之前的版本略有不同
jdk1.8之前:
JDK 1.8 :
线程私有的:
- 程序计数器
- 虚拟机栈
- 本地方法栈
线程共享:
- 堆
- 方法区
- 直接内存 (非运行时数据区的一部分)
程序计数器
为了线程切换后能恢复到正确的执行位置,每条线程都需要有一个独立的程序计数器,各线程之间计数器互不影响,独立存储,我们称这类内存区域为“线程私有”的内存。
作用:
- 字节码解释器通过改变程序计数器来依次读取指令,从而实现代码的流程控制,如:顺序执行、选择、循环、异常处理。
- 在多线程的情况下,程序计数器用于记录当前线程执行的位置,从而当线程被切换回来的时候能够知道该线程上次运行到哪儿了。
程序计数器是唯一一个不会出现 OutOfMemoryError
的内存区域,它的生命周期随着线程的创建而创建,随着线程的结束而死亡。
Java虚拟机栈
它的生命周期和线程相同,描述的是 Java 方法执行的内存模型,每次方法调用的数据都是通过栈传递的。
Java 内存可以粗糙的区分为堆内存(Heap)和栈内存 (Stack),其中栈就是现在说的虚拟机栈,或者说是虚拟机栈中局部变量表部分。(实际上,Java 虚拟机栈是由一个个栈帧组成,而每个栈帧中都拥有:局部变量表、操作数栈、动态链接、方法出口信息。)
局部变量表主要存放了编译期可知的各种数据类型(boolean、byte、char、short、int、float、long、double)、对象引用(reference 类型,它不同于对象本身,可能是一个指向对象起始地址的引用指针,也可能是指向一个代表对象的句柄或其他与此对象相关的位置)。
Java 虚拟机栈会出现两种错误:StackOverFlowError
和 OutOfMemoryError
。
StackOverFlowError
: 若 Java 虚拟机栈的内存大小不允许动态扩展,那么当线程请求栈的深度超过当前 Java 虚拟机栈的最大深度的时候,就抛出StackOverFlowError
错误。OutOfMemoryError
: Java 虚拟机栈的内存大小可以动态扩展, 如果虚拟机在动态扩展栈时无法申请到足够的内存空间,则抛出OutOfMemoryError
异常。
[scode type="share"]HotSpot虚拟机的栈容量是不可以动态扩展的,以前的Classic虚拟机可以。[/scode]
每一次函数调用都会有一个对应的栈帧被压入 Java 栈,每一个函数调用结束后,都会有一个栈帧被弹出。
Java 方法有两种返回方式:
- return 语句。
- 抛出异常。
不管哪种返回方式都会导致栈帧被弹出。
本地方法栈
和虚拟机栈所发挥的作用非常相似,区别是: 虚拟机栈为虚拟机执行 Java 方法
(也就是字节码)服务,而本地方法栈则为虚拟机使用到的 Native 方法服务
。 在 HotSpot 虚拟机中和 Java 虚拟机栈合二为一。
本地方法被执行的时候,在本地方法栈也会创建一个栈帧,用于存放该本地方法的局部变量表、操作数栈、动态链接、出口信息。
方法执行完毕后相应的栈帧也会出栈并释放内存空间,也会出现 StackOverFlowError 和 OutOfMemoryError 两种错误。
堆
Java 虚拟机所管理的内存中最大的一块,Java 堆是所有线程共享的一块内存区域,在虚拟机启动时创建。此内存区域的唯一目的就是存放对象实例,几乎所有的对象实例以及数组都在这里分配内存。
(从 JDK 1.7 开始已经默认开启逃逸分析,如果某些方法中的对象引用没有被返回或者未被外面使用(也就是未逃逸出去),那么对象可以直接在栈上分配内存。)
Java 堆是垃圾收集器管理的主要区域,因此也被称作GC 堆(Garbage Collected Heap)
从垃圾回收的角度,由于现在收集器基本都采用分代垃圾收集算法,所以 Java 堆还可以细分为:新生代和老年代;再细致一点有:Eden 空间、From Survivor、To Survivor 空间等。
进一步划分的目的是更好地回收内存,或者更快地分配内存。
在 JDK 7 版本及 JDK 7 版本之前,堆内存被通常分为下面三部分:
- 新生代内存(Young Generation)
- 老生代(Old Generation)
- 永久代(Permanent Generation)
JDK 8 版本之后方法区(HotSpot 的永久代)被彻底移除了(JDK1.7 就已经开始了),取而代之是元空间,元空间使用的是直接内存。
上图所示的 Eden 区、两个 Survivor 区都属于新生代(为了区分,这两个 Survivor 区域按照顺序被命名为 from 和 to),中间一层属于老年代。
大部分情况,对象都会首先在 Eden 区域分配,在一次新生代垃圾回收后,如果对象还存活,则会进入 s0 或者 s1,并且对象的年龄还会加 1(Eden 区->Survivor 区后对象的初始年龄变为 1)。
Hotspot 遍历所有对象时,按照年龄从小到大对其所占用的大小进行累积,当累积的某个年龄大小超过了 survivor 区的一半时,取这个年龄和 MaxTenuringThreshold 中更小的一个值,作为新的晋升年龄阈值。对象晋升到老年代的年龄阈值,可以通过参数 -XX:MaxTenuringThreshold 来设置。
最大堆内存可通过-Xmx参数配置
方法区
方法区与 Java 堆一样,是各个线程共享的内存区域,它用于存储已被虚拟机加载的类信息、常量、静态变量、即时编译器编译后的代码等数据。
虽然 Java 虚拟机规范把方法区描述为堆的一个逻辑部分,但是它却有一个别名叫做 Non-Heap(非堆),目的应该是与 Java 堆区分开来。
方法区也被称为永久代。
[scode type="share"]《Java 虚拟机规范》只是规定了有方法区这么个概念和它的作用,并没有规定如何去实现它。那么,在不同的 JVM 上方法区的实现肯定是不同的了。 方法区和永久代的关系很像 Java 中接口和类的关系,类实现了接口,而永久代就是 HotSpot 虚拟机对虚拟机规范中方法区的一种实现方式。 也就是说,永久代是 HotSpot 的概念,方法区是 Java 虚拟机规范中的定义,是一种规范,而永久代是一种实现,一个是标准一个是实现,其他的虚拟机实现并没有永久代这一说法。[/scode]
JDK 1.8 的时候,方法区(HotSpot 的永久代)被彻底移除了(JDK1.7 就已经开始了),取而代之是元空间,元空间使用的是直接内存。
为什么要将永久代替换为元空间
- 整个永久代有一个 JVM 本身设置的固定大小上限,无法进行调整,而元空间使用的是直接内存,受本机可用内存的限制,虽然元空间仍旧可能溢出,但是比原来出现的几率会更小。
- 元空间里面存放的是类的元数据,这样加载多少类的元数据就不由 MaxPermSize 控制了, 而由系统的实际可用空间来控制,这样能加载的类就更多了。
- 在 JDK8,合并 HotSpot 和 JRockit 的代码时, JRockit 从来没有一个叫永久代的东西, 合并之后就没有必要额外的设置这么一个永久代的地方了。
运行时常量池
运行时常量池是方法区的一部分。Class 文件中除了有类的版本、字段、方法、接口等描述信息外,还有常量池表(用于存放编译期生成的各种字面量和符号引用)
既然运行时常量池是方法区的一部分,自然受到方法区内存的限制,当常量池无法再申请到内存时会抛出 OutOfMemoryError 错误。
- JDK1.7 之前运行时常量池逻辑包含字符串常量池存放在方法区, 此时 hotspot 虚拟机对方法区的实现为永久代
- JDK1.7 字符串常量池被从方法区拿到了堆中, 这里没有提到运行时常量池,也就是说字符串常量池被单独拿到堆,运行时常量池剩下的东西还在方法区, 也就是 hotspot 中的永久代 。
- JDK1.8 hotspot 移除了永久代用元空间(Metaspace)取而代之, 这时候字符串常量池还在堆, 运行时常量池还在方法区, 只不过方法区的实现从永久代变成了元空间(Metaspace)
直接内存
直接内存并不是虚拟机运行时数据区的一部分,也不是虚拟机规范中定义的内存区域,但是这部分内存也被频繁地使用。而且也可能导致 OutOfMemoryError 错误出现。
JDK1.4 中新加入的 NIO(New Input/Output) 类,引入了一种基于通道(Channel)与缓存区(Buffer)的 I/O 方式,它可以直接使用 Native 函数库直接分配堆外内存,然后通过一个存储在 Java 堆中的 DirectByteBuffer 对象作为这块内存的引用进行操作。这样就能在一些场景中显著提高性能,因为避免了在 Java 堆和 Native 堆之间来回复制数据。
本机直接内存的分配不会受到 Java 堆的限制,但是,既然是内存就会受到本机总内存大小以及处理器寻址空间的限制。
HotSpot 虚拟机对象探秘
对象的创建
1.类加载检查
虚拟机遇到一条 new
指令时,首先将去检查这个指令的参数是否能在常量池中定位到这个类的符号引用,并且检查这个符号引用代表的类是否已被加载过、解析和初始化过。如果没有,那必须先执行相应的类加载过程
2.分配内存
在类加载检查通过后,接下来虚拟机将为新生对象分配内存。对象所需的内存大小在类加载完成后便可确定,为对象分配空间的任务等同于把一块确定大小的内存从 Java 堆中划分出来。分配方式有 “指针碰撞” 和 “空闲列表” 两种,选择哪种分配方式由 Java 堆是否规整决定,而 Java 堆是否规整又由所采用的垃圾收集器是否带有压缩整理功能决定。
内存分配的两种方式:(补充内容,需要掌握)
指针碰撞
适用于堆内存完整的情况,已分配的内存和空闲内存分表在不同的一侧,通过一个指针指向分界点,当需要分配内存时,把指针往空闲的一端移动与对象大小相等的距离即可,用于Serial和ParNew等不会产生内存碎片的垃圾收集器。
空闲列表
适用于堆内存不完整的情况,已分配的内存和空闲内存相互交错,JVM通过维护一张内存列表记录可用的内存块信息,当分配内存时,从列表中找到一个足够大的内存块分配给对象实例,并更新列表上的记录,最常见的使用此方案的垃圾收集器就是CMS。
选择以上两种方式中的哪一种,取决于 Java 堆内存是否规整。而 Java 堆内存是否规整,取决于 GC 收集器的算法是"标记-清除",还是"标记-整理"(也称作"标记-压缩"),值得注意的是,复制算法内存也是规整的
内存分配并发问题(补充内容,需要掌握)
在创建对象的时候有一个很重要的问题,就是线程安全,因为在实际开发过程中,创建对象是很频繁的事情,作为虚拟机来说,必须要保证线程是安全的,通常来讲,虚拟机采用两种方式来保证线程安全:
- CAS+失败重试: CAS 是乐观锁的一种实现方式。所谓乐观锁就是,每次不加锁而是假设没有冲突而去完成某项操作,如果因为冲突失败就重试,直到成功为止。虚拟机采用 CAS 配上失败重试的方式保证更新操作的原子性。
- TLAB: 为每一个线程预先在 Eden 区分配一块儿内存,JVM 在给线程中的对象分配内存时,首先在 TLAB 分配,当对象大于 TLAB 中的剩余内存或 TLAB 的内存已用尽时,再采用上述的 CAS 进行内存分配
逃逸分析
逃逸分析就是:一种确定指针动态范围的静态分析,它可以分析在程序的哪些地方可以访问到指针。
在JVM的即时编译语境下,逃逸分析将判断新建的对象是否逃逸。
即时编译判断对象是否逃逸的依据:一种是对象是否被存入堆中(静态字段或者堆中对象的实例字段),另一种就是对象是否被传入未知代码。
一种典型的对象逃逸就是:对象被复制给成员变量或者静态变量,可能被外部使用,此时变量就发生了逃逸。
另一种典型的场景就是:对象通过return语句返回。如果对象通过return语句返回了,此时的程序并不能确定这个对象后续会不会被使用,外部的线程可以访问到这个变量,此时对象也发生了逃逸。
JVM通过逃逸分析,能够分析出新对象的使用范围,从而决定新对象是否要在堆上进行分配。
逃逸分析的优点总体上来说可以分为三个:对象可能分配在栈上、分离对象或标量替换、消除同步锁。
对象可能分配在栈上
JVM通过逃逸分析,分析出新对象的使用范围,就可能将对象在栈上进行分配。栈分配可以快速地在栈帧上创建和销毁对象,不用再将对象分配到堆空间,可以有效地减少 JVM 垃圾回收的压力。
分离对象或标量替换
当JVM通过逃逸分析,确定要将对象分配到栈上时,即时编译可以将对象打散,将对象替换为一个个很小的局部变量,我们将这个打散的过程叫做标量替换。将对象替换为一个个局部变量后,就可以非常方便的在栈上进行分配了。
同步锁消除
如果JVM通过逃逸分析,发现一个对象只能从一个线程被访问到,则访问这个对象时,可以不加同步锁。如果程序中使用了synchronized锁,则JVM会将synchronized锁消除。
这里,需要注意的是:这种情况针对的是synchronized锁,而对于Lock锁,则JVM并不能消除。
要开启同步消除,需要加上 -XX:+EliminateLocks 参数。因为这个参数依赖逃逸分析,所以同时要打开 -XX:+DoEscapeAnalysis 选项。
所以,并不是所有的对象和数组,都是在堆上进行分配的,由于即时编译的存在,如果JVM发现某些对象没有逃逸出方法,就很有可能被优化成在栈上分配。
3.Step3:初始化零值
内存分配完成后,虚拟机需要将分配到的内存空间都初始化为零值(不包括对象头),这一步操作保证了对象的实例字段在 Java 代码中可以不赋初始值就直接使用,程序能访问到这些字段的数据类型所对应的零值。
4.设置对象头
初始化零值完成之后,虚拟机要对对象进行必要的设置,例如这个对象是哪个类的实例、如何才能找到类的元数据信息、对象的哈希码、对象的 GC 分代年龄等信息。 这些信息存放在对象头中。 另外,根据虚拟机当前运行状态的不同,如是否启用偏向锁等,对象头会有不同的设置方式。
5.执行 init 方法
在上面工作都完成之后,从虚拟机的视角来看,一个新的对象已经产生了,但从 Java 程序的视角来看,对象创建才刚开始,<init>
方法,把对象按照程序员的意愿进行初始化,这样一个真正可用的对象才算完全产生出来。
对象的内存布局
在 Hotspot 虚拟机中,对象在内存中的布局可以分为 3 块区域:对象头、实例数据和对齐填充。
Hotspot 虚拟机的对象头包括两部分信息,第一部分用于存储对象自身的运行时数据(哈希码、GC 分代年龄、锁状态标志等等),另一部分是类型指针,即对象指向它的类元数据的指针,虚拟机通过这个指针来确定这个对象是那个类的实例。
实例数据部分是对象真正存储的有效信息,也是在程序中所定义的各种类型的字段内容。
对齐填充部分不是必然存在的,也没有什么特别的含义,仅仅起占位作用。 因为 Hotspot 虚拟机的自动内存管理系统要求对象起始地址必须是 8 字节的整数倍,换句话说就是对象的大小必须是 8 字节的整数倍。而对象头部分正好是 8 字节的倍数(1 倍或 2 倍),因此,当对象实例数据部分没有对齐时,就需要通过对齐填充来补全。
对象的访问定位
建立对象就是为了使用对象,我们的 Java 程序通过栈上的 reference 数据来操作堆上的具体对象。对象的访问方式由虚拟机实现而定,目前主流的访问方式有使用句柄和 直接指针两种:
句柄
如果使用句柄的话,那么 Java 堆中将会划分出一块内存来作为句柄池,reference 中存储的就是对象的句柄地址,而句柄中包含了对象实例数据与类型数据各自的具体地址信息;
直接指针
如果使用直接指针访问,那么 Java 堆对象的布局中就必须考虑如何放置访问类型数据的相关信息,而 reference 中存储的直接就是对象的地址。
这两种对象访问方式各有优势。
- 使用句柄来访问的最大好处是 reference 中存储的是稳定的句柄地址,在对象被移动时只会改变句柄中的实例数据指针,而 reference 本身不需要修改。
- 使用直接指针访问方式最大的好处就是速度快,它节省了一次指针定位的时间开销。
String和常量池
String str1 = "abcd";//先检查字符串常量池中有没有"abcd",如果字符串常量池中没有,则创建一个,然后 str1 指向字符串常量池中的对象,如果有,则直接将 str1 指向"abcd"";
String str2 = new String("abcd");//堆中创建一个新的对象
String str3 = new String("abcd");//堆中创建一个新的对象
System.out.println(str1==str2);//false
System.out.println(str2==str3);//false
只要使用 new 方法,便需要创建新的对象
String 类型的常量池比较特殊。它的主要使用方法有两种:
- 直接使用双引号声明出来的 String 对象会直接存储在常量池中。
- 如果不是用双引号声明的 String 对象,可以使用 String 提供的 intern() 方法。String.intern() 是一个 Native 方法,它的作用是:如果运行时常量池中已经包含一个等于此 String 对象内容的字符串,则返回常量池中该字符串的引用;如果没有,JDK1.7 之前(不包含 1.7)的处理方式是在常量池中创建与此 String 内容相同的字符串,并返回常量池中创建的字符串的引用,JDK1.7 以及之后的处理方式是在常量池中记录此字符串的引用,并返回该引用。
String s1 = "计算机";
String s2 = s1.intern();
String s3 = "计算机";
System.out.println(s2);//计算机
System.out.println(s1 == s2);//true
System.out.println(s3 == s2);//true,因为两个都是常量池中的 String 对象
字符串拼接:
String str1 = "str";
String str2 = "ing";
String str3 = "str" + "ing";//常量池中的对象
String str4 = str1 + str2; //在堆上创建的新的对象
String str5 = "string";//常量池中的对象
System.out.println(str3 == str4);//false
System.out.println(str3 == str5);//true
System.out.println(str4 == str5);//false
问:String s1 = new String("abc");这句话创建了几个字符串对象?
将创建 1 或 2 个字符串。如果池中已存在字符串常量“abc”,则只会在堆空间创建一个字符串常量“abc”。如果池中没有字符串常量“abc”,那么它将首先在池中创建,然后在堆空间中创建,因此将创建总共 2 个字符串对象。
[scode type="green"]Java 基本类型的包装类的大部分都实现了常量池技术,即 Byte,Short,Integer,Long,Character,Boolean;前面 4 种包装类默认创建了数值[-128,127] 的相应类型的缓存数据,Character 创建了数值在[0,127]范围的缓存数据,Boolean 直接返回 True Or False。如果超出对应范围仍然会去创建新的对象[/scode]
Java垃圾回收
这部分常见面试题:
- 如何判断对象是否死亡(两种方法)。
- 简单的介绍一下强引用、软引用、弱引用、虚引用(虚引用与软引用和弱引用的区别、使用软引用能带来的好处)。
- 如何判断一个常量是废弃常量
- 如何判断一个类是无用的类
- 垃圾收集有哪些算法,各自的特点?
- HotSpot 为什么要分为新生代和老年代?
- 常见的垃圾回收器有哪些?
- 介绍一下 CMS,G1 收集器。
- Minor Gc 和 Full GC 有什么不同呢?
当需要排查各种内存溢出问题、当垃圾收集成为系统达到更高并发的瓶颈时,我们就需要对这些“自动化”的技术实施必要的监控和调节。
概览
Java 的自动内存管理主要是针对对象内存的回收和对象内存的分配。同时,Java 自动内存管理最核心的功能是 堆内存中对象的分配与回收。
Java 堆是垃圾收集器管理的主要区域,因此也被称作GC堆(Garbage Collected Heap)。
从垃圾回收的角度,由于现在收集器基本都采用分代垃圾收集算法,所以 Java 堆还可以细分为:新生代和老年代。
再细致一点有:Eden 空间、From Survivor、To Survivor 空间等。
进一步划分的目的是更好地回收内存,或者更快地分配内存。
大部分情况,对象都会首先在 Eden 区域分配,在一次新生代垃圾回收后,如果对象还存活,则会进入 s0 或者 s1,并且对象的年龄还会加 1(Eden 区->Survivor 区后对象的初始年龄变为 1)
Hotspot 遍历所有对象时,按照年龄从小到大对其所占用的大小进行累积,当累积的某个年龄大小超过了 survivor 区的一半时,取这个年龄和 MaxTenuringThreshold 中更小的一个值,作为新的晋升年龄阈值
对象晋升到老年代的年龄阈值,可以通过参数 -XX:MaxTenuringThreshold
来设置默认值,这个值会在虚拟机运行过程中进行调整,可以通过-XX:+PrintTenuringDistribution
来打印出当次GC后的Threshold。
经过这次 GC 后,Eden 区和"From"区已经被清空。这个时候,"From"和"To"会交换他们的角色,也就是新的"To"就是上次 GC 前的“From”,新的"From"就是上次 GC 前的"To"。
不管怎样,都会保证名为 To 的 Survivor 区域是空的。
Minor GC 会一直重复这样的过程,在这个过程中,有可能当次Minor GC后,Survivor 的"From"区域空间不够用,有一些还达不到进入老年代条件的实例放不下,则放不下的部分会提前进入老年代。
对象优先在 eden 区分配
目前主流的垃圾收集器都会采用分代回收算法,因此需要将堆内存分为新生代和老年代,这样我们就可以根据各个年代的特点选择合适的垃圾收集算法。
大多数情况下,对象在新生代中 eden 区分配。当 eden 区没有足够空间进行分配时,虚拟机将发起一次 Minor GC。(如果无法存入 Survivor 空间,可通过 分配担保机制 把新生代的对象提前转移到老年代中)
大对象直接进入老年代
为了避免为大对象分配内存时由于分配担保机制带来的复制而降低效率,大对象直接进入老年代, 如连续内存空间的对象(比如:字符串、数组)。
长期存活的对象将进入老年代
既然虚拟机采用了分代收集的思想来管理内存,那么内存回收时就必须能识别哪些对象应放在新生代,哪些对象应放在老年代中。为了做到这一点,虚拟机给每个对象一个对象年龄(Age)计数器。
大部分情况,对象都会首先在 Eden 区域分配,在一次新生代垃圾回收后,如果对象还存活,则会进入 s0 或者 s1,并且对象的年龄还会加 1(Eden 区->Survivor 区后对象的初始年龄变为 1)
Hotspot 遍历所有对象时,按照年龄从小到大对其所占用的大小进行累积,当累积的某个年龄大小超过了 survivor 区的 50% 时(默认值是 50%,可以通过 -XX:TargetSurvivorRatio=percent
来设置),取这个年龄和 MaxTenuringThreshold
中更小的一个值,作为新的晋升年龄阈值
默认晋升年龄并不都是 15,这个是要区分垃圾收集器的,CMS 就是 6.
主要进行 gc 的区域
针对 HotSpot VM 的实现,它里面的 GC 其实准确分类只有两大种:
部分收集 (Partial GC):
- 新生代收集(Minor GC / Young GC):只对新生代进行垃圾收集;
- 老年代收集(Major GC / Old GC):只对老年代进行垃圾收集。需要注意的是 Major GC 在有的语境中也用于指代整堆收集;
- 混合收集(Mixed GC):对整个新生代和部分老年代进行垃圾收集。
整堆收集 (Full GC):收集整个 Java 堆和方法区。
空间分配担保
空间分配担保是为了确保在 Minor GC 之前老年代本身还有容纳新生代所有对象的剩余空间。
判断对象是否死亡
引用计数法
给对象中添加一个引用计数器,每当有一个地方引用它,计数器就加 1;当引用失效,计数器就减 1;任何时候计数器为 0 的对象就是不可能再被使用的。
问题:很难解决对象之间相互循环引用的问题
可达性分析算法
这个算法的基本思想就是通过一系列的称为 “GC Roots” 的对象作为起点,从这些节点开始向下搜索,节点所走过的路径称为引用链,当一个对象到 GC Roots 没有任何引用链相连的话,则证明此对象是不可用的。
可作为 GC Roots 的对象包括下面几种:
- 虚拟机栈(栈帧中的本地变量表)中引用的对象
- 本地方法栈(Native 方法)中引用的对象
- 方法区中类静态属性引用的对象
- 方法区中常量引用的对象
- 所有被同步锁持有的对象
引用类型
强引用
以前我们使用的大部分引用实际上都是强引用,这是使用最普遍的引用。如果一个对象具有强引用,那就类似于必不可少的生活用品,垃圾回收器绝不会回收它。当内存空间不足,Java 虚拟机宁愿抛出 OutOfMemoryError 错误,使程序异常终止,也不会靠随意回收具有强引用的对象来解决内存不足问题。
软引用
如果一个对象只具有软引用,那就类似于可有可无的生活用品。如果内存空间足够,垃圾回收器就不会回收它,如果内存空间不足了,就会回收这些对象的内存。只要垃圾回收器没有回收它,该对象就可以被程序使用。软引用可用来实现内存敏感的高速缓存。
软引用可以和一个引用队列(ReferenceQueue)联合使用,如果软引用所引用的对象被垃圾回收,JAVA 虚拟机就会把这个软引用加入到与之关联的引用队列中。
弱引用
如果一个对象只具有弱引用,那就类似于可有可无的生活用品。弱引用与软引用的区别在于:只具有弱引用的对象拥有更短暂的生命周期。在垃圾回收器线程扫描它所管辖的内存区域的过程中,一旦发现了只具有弱引用的对象,不管当前内存空间足够与否,都会回收它的内存。不过,由于垃圾回收器是一个优先级很低的线程, 因此不一定会很快发现那些只具有弱引用的对象。
弱引用可以和一个引用队列(ReferenceQueue)联合使用,如果弱引用所引用的对象被垃圾回收,Java 虚拟机就会把这个弱引用加入到与之关联的引用队列中。
虚引用
"虚引用"顾名思义,就是形同虚设,与其他几种引用都不同,虚引用并不会决定对象的生命周期。如果一个对象仅持有虚引用,那么它就和没有任何引用一样,在任何时候都可能被垃圾回收。
虚引用主要用来跟踪对象被垃圾回收的活动。
区别
虚引用与软引用和弱引用的一个区别在于: 虚引用必须和引用队列(ReferenceQueue)联合使用。当垃圾回收器准备回收一个对象时,如果发现它还有虚引用,就会在回收对象的内存之前,把这个虚引用加入到与之关联的引用队列中。程序可以通过判断引用队列中是否已经加入了虚引用,来了解被引用的对象是否将要被垃圾回收。程序如果发现某个虚引用已经被加入到引用队列,那么就可以在所引用的对象的内存被回收之前采取必要的行动。
特别注意,在程序设计中一般很少使用弱引用与虚引用,使用软引用的情况较多,这是因为软引用可以加速 JVM 对垃圾内存的回收速度,可以维护系统的运行安全,防止内存溢出(OutOfMemory)等问题的产生。
不可达的对象并非“非死不可”
即使在可达性分析法中不可达的对象,也并非是“非死不可”的,这时候它们暂时处于“缓刑阶段”,要真正宣告一个对象死亡,至少要经历两次标记过程.
可达性分析法中不可达的对象被第一次标记并且进行一次筛选,筛选的条件是此对象是否有必要执行 finalize 方法。
当对象没有覆盖 finalize 方法,或 finalize 方法已经被虚拟机调用过时,虚拟机将这两种情况视为没有必要执行。
被判定为需要执行的对象将会被放在一个队列中进行第二次标记,除非这个对象与引用链上的任何一个对象建立关联,否则就会被真的回收。
如何判断一个常量是废弃常量
JDK1.8 hotspot 移除了永久代用元空间(Metaspace)取而代之, 这时候字符串常量池还在堆, 运行时常量池还在方法区, 只不过方法区的实现从永久代变成了元空间(Metaspace)
假如在字符串常量池中存在字符串 "abc",如果当前没有任何 String 对象引用该字符串常量的话,就说明常量 "abc" 就是废弃常量,如果这时发生内存回收的话而且有必要的话,"abc" 就会被系统清理出常量池了。
如何判断一个类是无用的类
- 该类所有的实例都已经被回收,也就是 Java 堆中不存在该类的任何实例。
- 加载该类的
ClassLoader
已经被回收。 - 该类对应的
java.lang.Class
对象没有在任何地方被引用,无法在任何地方通过反射访问该类的方法。
(虚拟机可以对满足上述 3 个条件的无用类进行回收,这里说的仅仅是“可以”,而并不是和对象一样不使用了就会必然被回收。)
垃圾回收算法
标记-清除算法
该算法分为“标记”和“清除”阶段:首先标记出所有不需要回收的对象,在标记完成后统一回收掉所有没有被标记的对象。
这种垃圾收集算法会带来两个明显的问题:
- 效率问题
- 空间问题(标记清除后会产生大量不连续的碎片)
标记-复制算法
为了解决效率问题,“标记-复制”收集算法出现了。
它可以将内存分为大小相同的两块,每次使用其中的一块。当这一块的内存使用完后,就将还存活的对象复制到另一块去,然后再把使用的空间一次清理掉。这样就使每次的内存回收都是对内存区间的一半进行回收。
标记-整理算法
根据老年代的特点提出的一种标记算法,标记过程仍然与“标记-清除”算法一样,但后续步骤不是直接对可回收对象回收,而是让所有存活的对象向一端移动,然后直接清理掉端边界以外的内存。
分代收集算法
当前虚拟机的垃圾收集都采用分代收集算法,这种算法没有什么新的思想,只是根据对象存活周期的不同将内存分为几块。一般将 java 堆分为新生代和老年代,这样我们就可以根据各个年代的特点选择合适的垃圾收集算法。
比如在新生代中,每次收集都会有大量对象死去,所以可以选择”标记-复制“算法,只需要付出少量对象的复制成本就可以完成每次垃圾收集。
而老年代的对象存活几率是比较高的,而且没有额外的空间对它进行分配担保,所以我们必须选择“标记-清除”或“标记-整理”算法进行垃圾收集。
三色标记
并发标记,适用于CMS
和G1
,并发标记的意思就是可以在不暂停用户线程的情况下对其进行标记,那么实现这种并发标记的算法就是三色标记法,三色标记法最大的特点就是可以异步执行,从而可以以中断时间极少的代价或者完全没有中断来进行整个GC。
要找出存活对象,根据可达性分析,从GC Roots开始进行遍历访问,可达的则为存活对象。我们把遍历对象图过程中遇到的对象,按“是否访问过”这个条件标记成以下三种颜色:
- 白色:尚未被GC访问过的对象,如果全部标记已完成依旧为白色的,称为不可达对象,既垃圾对象。
- 黑色:本对象已经被GC访问过,且本对象的子引用对象也已经被访问过了。
- 灰色:本对象已访问过,但是本对象的子引用对象还没有被访问过,全部访问完会变成黑色,属于中间态。
存在的问题:
- 浮动垃圾:本应该被标记为白色的对象,没有被标记,造成该对象可能不会被回收。
- 漏标:灰色对象指向白色对象的引用消失了,然后一个黑色的对象重新引用了白色对象。
解决:
- CMS:Incremental Update算法
- G1:SATB(Snapshot At The Beginning)算法
垃圾收集器
如果说收集算法是内存回收的方法论,那么垃圾收集器就是内存回收的具体实现。
Serial 收集器
Serial(串行)收集器是最基本、历史最悠久的垃圾收集器了。(单线程收集器)
新生代采用标记-复制算法,老年代采用标记-整理算法。
它在进行垃圾收集工作的时候必须暂停其他所有的工作线程( "Stop The World" ),直到它收集结束。
Serial 收集器对于运行在 Client 模式下的虚拟机来说是个不错的选择。
ParNew 收集器
ParNew 收集器其实就是 Serial 收集器的多线程版本,除了使用多线程进行垃圾收集外,其余行为(控制参数、收集算法、回收策略等等)和 Serial 收集器完全一样。
Parallel Scavenge 收集器
Parallel Scavenge 收集器也是使用标记-复制算法的多线程收集器
Parallel Scavenge 收集器关注点是吞吐量(高效率的利用 CPU)。CMS 等垃圾收集器的关注点更多的是用户线程的停顿时间(提高用户体验)
Serial Old 收集器
Serial 收集器的老年代版本,它同样是一个单线程收集器。
它主要有两大用途:
- 在 JDK1.5 以及以前的版本中与 Parallel Scavenge 收集器搭配使用
- 作为 CMS 收集器的后备方案。
Parallel Old 收集器
Parallel Scavenge 收集器的老年代版本。使用多线程和“标记-整理”算法。在注重吞吐量以及 CPU 资源的场合,都可以优先考虑 Parallel Scavenge 收集器和 Parallel Old 收集器。
CMS 收集器
CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器。它非常符合在注重用户体验的应用上使用。
CMS(Concurrent Mark Sweep)收集器是 HotSpot 虚拟机第一款真正意义上的并发收集器,它第一次实现了让垃圾收集线程与用户线程(基本上)同时工作。
CMS 收集器是一种 “标记-清除”算法实现的,整个过程分为四个步骤:
- 初始标记
- 并发标记
- 重新标记
- 并发清除
主要优点:并发收集、低停顿。但是它有下面三个明显的缺点:
- 对 CPU 资源敏感;
- 无法处理浮动垃圾;
- 它使用的回收算法-“标记-清除”算法会导致收集结束时会有大量空间碎片产生。
G1 收集器
G1 (Garbage-First) 是一款面向服务器的垃圾收集器,主要针对配备多颗处理器及大容量内存的机器..
以极高概率满足 GC 停顿时间要求的同时,还具备高吞吐量性能特征:
- 并行与并发
- 分代收集
- 空间整合
- 可预测的停顿
G1 收集器的运作大致分为以下几个步骤:
- 初始标记
- 并发标记
- 最终标记
- 筛选回收
G1 收集器在后台维护了一个优先列表,每次根据允许的收集时间,优先选择回收价值最大的 Region(这也就是它的名字 Garbage-First 的由来) 。
这种使用 Region 划分内存空间以及有优先级的区域回收方式,保证了 G1 收集器在有限时间内可以尽可能高的收集效率(把内存化整为零)。
ZGC 收集器
与 CMS 中的 ParNew 和 G1 类似,ZGC 也采用标记-复制算法,不过 ZGC 对该算法做了重大改进。
在 ZGC 中出现 Stop The World 的情况会更少!
JDK 监控和故障处理工具总结
JDK 命令行工具
这些命令在 JDK 安装目录下的 bin 目录下:
jps
(JVM Process Status): 类似 UNIX 的 ps 命令。用于查看所有 Java 进程的启动类、传入参数和 Java 虚拟机参数等信息;jstat
(JVM Statistics Monitoring Tool): 用于收集 HotSpot 虚拟机各方面的运行数据;jinfo
(Configuration Info for Java) : Configuration Info for Java,显示虚拟机配置信息;jmap
(Memory Map for Java) : 生成堆转储快照;jhat
(JVM Heap Dump Browser) : 用于分析 heapdump 文件,它会建立一个 HTTP/HTML 服务器,让用户可以在浏览器上查看分析结果;jstack
(Stack Trace for Java) : 生成虚拟机当前时刻的线程快照,线程快照就是当前虚拟机内每一条线程正在执行的方法堆栈的集合。
JDK 可视化分析工具
JConsole:Java 监视与管理控制台
JConsole 是基于 JMX 的可视化监视、管理工具。可以很方便的监视本地及远程服务器的 java 进程的内存使用情况。你可以在控制台输出console命令启动或者在 JDK 目录下的 bin 目录找到jconsole.exe然后双击启动。
Visual VM:多合一故障处理工具
VisualVM 提供在 Java 虚拟机 (Java Virutal Machine, JVM) 上运行的 Java 应用程序的详细信息。在 VisualVM 的图形用户界面中,您可以方便、快捷地查看多个 Java 应用程序的相关信息。
类文件结构
概述
在 Java 中,JVM 可以理解的代码就叫做字节码(即扩展名为 .class 的文件),它不面向任何特定的处理器,只面向虚拟机。
Java 语言通过字节码的方式,在一定程度上解决了传统解释型语言执行效率低的问题,同时又保留了解释型语言可移植的特点。
Java 程序运行时比较高效,而且,由于字节码并不针对一种特定的机器,因此,Java 程序无须重新编译便可在多种不同操作系统的计算机上运行。
Clojure(Lisp 语言的一种方言)、Groovy、Scala 等语言都是运行在 Java 虚拟机之上。
可以说.class文件是不同的语言在 Java 虚拟机之间的重要桥梁,同时也是支持 Java 跨平台很重要的一个原因。
结构
根据 Java 虚拟机规范,Class 文件通过 ClassFile 定义,有点类似 C 语言的结构体。
ClassFile {
u4 magic; //Class 文件的标志
u2 minor_version;//Class 的小版本号
u2 major_version;//Class 的大版本号
u2 constant_pool_count;//常量池的数量
cp_info constant_pool[constant_pool_count-1];//常量池
u2 access_flags;//Class 的访问标记
u2 this_class;//当前类
u2 super_class;//父类
u2 interfaces_count;//接口
u2 interfaces[interfaces_count];//一个类可以实现多个接口
u2 fields_count;//Class 文件的字段属性
field_info fields[fields_count];//一个类会可以有多个字段
u2 methods_count;//Class 文件的方法数量
method_info methods[methods_count];//一个类可以有个多个方法
u2 attributes_count;//此类的属性表中的属性数
attribute_info attributes[attributes_count];//属性表集合
}
类的生命周期
类加载过程
JVM加载 Class 类型的文件主要三步:加载->连接->初始化。连接过程又可分为三步:验证->准备->解析。
加载
- 通过全类名获取定义此类的二进制字节流
- 将字节流所代表的静态存储结构转换为方法区的运行时数据结构
- 在内存中生成一个代表该类的 Class 对象,作为方法区这些数据的访问入口
一个非数组类的加载阶段(加载阶段获取类的二进制字节流的动作)是可控性最强的阶段,这一步我们可以去完成还可以自定义类加载器去控制字节流的获取方式(重写一个类加载器的 loadClass() 方法)。
数组类型不通过类加载器创建,它由 Java 虚拟机直接创建。
加载阶段和连接阶段的部分内容是交叉进行的,加载阶段尚未结束,连接阶段(验证、准备、解析)可能就已经开始了。
验证
准备
准备阶段是正式为类变量分配内存并设置类变量(静态变量)初始值的阶段,这些内存都将在方法区中分配。
对于该阶段有以下几点需要注意:
- 这时候进行内存分配的仅包括类变量( Class Variables ,即静态变量,被 static 关键字修饰的变量,只与类相关,因此被称为类变量),而不包括实例变量。实例变量会在对象实例化时随着对象一块分配在 Java 堆中。
- 从概念上讲,类变量所使用的内存都应当在 方法区 中进行分配。
- 这里所设置的初始值"通常情况"下是数据类型默认的零值(如 0、0L、null、false 等),比如我们定义了public static int value=111 ,那么 value 变量在准备阶段的初始值就是 0 而不是 111(初始化阶段才会赋值)。
特殊情况:比如给 value 变量加上了 final 关键字public static final int value=111 ,那么准备阶段 value 的值就被赋值为 111。
解析
解析阶段是虚拟机将常量池内的符号引用替换为直接引用的过程。(也就是得到类或者字段、方法在内存中的指针或者偏移量。)
解析动作主要针对类或接口、字段、类方法、接口方法、方法类型、方法句柄和调用限定符 7 类符号引用进行。
(符号引用就是一组符号来描述目标,可以是任何字面量。直接引用就是直接指向目标的指针、相对偏移量或一个间接定位到目标的句柄。)
初始化
初始化阶段是执行初始化方法 <clinit> ()
方法的过程,是类加载的最后一步,这一步 JVM 才开始真正执行类中定义的 Java 程序代码(字节码)。
[scode type="green"]
卸载
卸载类即该类的 Class 对象被 GC。
卸载类需要满足 3 个要求:
- 该类的所有的实例对象都已被 GC,也就是说堆不存在该类的实例对象。
- 该类Class没有在其他任何地方被引用(反射)
- 该类的类加载器classLoader的实例已被 GC
在 JVM 生命周期内,由 jvm 自带的类加载器加载的类是不会被卸载的。但是由我们自定义的类加载器加载的类是可能被卸载的。
类加载器
所有的类都由类加载器加载,加载的作用就是将 .class文件加载到内存。
概览
JVM 中内置了三个重要的 ClassLoader
:
BootstrapClassLoader
(启动类加载器) :最顶层的加载类,由 C++实现,负责加载 %JAVA_HOME%/lib目录下的 jar 包和类或者被 -Xbootclasspath参数指定的路径中的所有类。ExtensionClassLoader
(扩展类加载器) :主要负责加载 %JRE_HOME%/lib/ext 目录下的 jar 包和类,或被 java.ext.dirs 系统变量所指定的路径下的 jar 包。AppClassLoader
(应用程序类加载器) :面向我们用户的加载器,负责加载当前应用 classpath 下的所有 jar 包和类。
除了 BootstrapClassLoader
其他类加载器均由 Java 实现且全部继承自java.lang.ClassLoader
双亲委派模型
每一个类都有一个对应它的类加载器。系统中的 ClassLoader 在协同工作的时候会默认使用 双亲委派模型 。
即在类加载的时候,系统会首先判断当前类是否被加载过。已经被加载的类会直接返回,否则才会尝试加载。
加载的时候,首先会把该请求委派给父类加载器的 loadClass() 处理,因此所有的请求最终都应该传送到顶层的启动类加载器 BootstrapClassLoader 中。
当父类加载器无法处理时,才由自己来处理。当父类加载器为 null 时,会使用启动类加载器 BootstrapClassLoader 作为父类加载器。
双亲委派模型的好处
双亲委派模型保证了 Java 程序的稳定运行,可以避免类的重复加载(JVM 区分不同类的方式不仅仅根据类名,相同的类文件被不同的类加载器加载产生的是两个不同的类),也保证了 Java 的核心 API 不被篡改。
Java的核心API都是通过引导类加载器进行加载的,如果别人通过定义同样路径的类比如java.lang.Integer,类加载器通过向上委托,两个Integer,那么最终被加载的应该是jdk的Integer类,而并非我们自定义的,这样就避免了我们恶意篡改核心包的风险
如果没有使用双亲委派模型,而是每个类加载器加载自己的话就会出现一些问题,比如我们编写一个称为 java.lang.Object 类的话,那么程序运行的时候,系统就会出现多个不同的 Object 类。
自定义类加载器
除了 BootstrapClassLoader 其他类加载器均由 Java 实现且全部继承自java.lang.ClassLoader。如果我们要自定义自己的类加载器,很明显需要继承 ClassLoader。
如果我们不想打破双亲委派模型,就重写 ClassLoader 类中的 findClass()
方法即可,无法被父类加载器加载的类最终会通过这个方法被加载。
如果想打破双亲委派模型则需要重写 loadClass()
方法
定位性能问题
Linux命令
top
top命令使我们最常用的 Linux 命令之一,它可以实时的显示当前正在执行的进程的 CPU 使用率,内存使用率等系统信息。top -Hp pid
可以查看线程的系统资源使用情况。
vmstat
vmstat 是一个指定周期和采集次数的虚拟内存检测工具,可以统计内存,CPU,swap 的使用情况,它还有一个重要的常用功能,用来观察进程的上下文切换
pidstat
pidstat 是 Sysstat 中的一个组件,也是一款功能强大的性能监测工具,top 和 vmstat 两个命令都是监测进程的内存、CPU 以及 I/O 使用情况,而 pidstat 命令可以检测到线程级别的。
jstack
jstack 是 JDK 工具命令,它是一种线程堆栈分析工具,最常用的功能就是使用 jstack pid
命令查看线程的堆栈信息,也经常用来排除死锁情况。
jstat
它可以检测 Java 程序运行的实时情况,包括堆内存信息和垃圾回收信息,我们常常用来查看程序垃圾回收情况。常用的命令是jstat -gc pid
。
CPU占满
假设java进程pid为32805,则
- 通过执行
top -Hp 32805
查看 Java 线程情况 - 执行
printf '%x' 32826
获取 16 进制的线程 id,用于dump信息查询,结果为803a
。 - 最后我们执行
jstack 32805 |grep -A 20 803a
来查看下详细的dump信息。
假设dump信息直接定位出了问题方法以及代码行,这就定位出了 CPU 占满的问题。
内存泄露
以ThreadLocal为例:
[scode type="share"]ThreadLocal 是一个线程私有变量,可以绑定到线程上,在整个线程的生命周期都会存在,但是由于 ThreadLocal 的特殊性,ThreadLocal 是基于 ThreadLocalMap 实现的,ThreadLocalMap 的 Entry 继承 WeakReference,而 Entry 的 Key 是 WeakReference 的封装,换句话说 Key 就是弱引用,弱引用在下次 GC 之后就会被回收,如果 ThreadLocal 在 set 之后不进行后续的操作,因为 GC 会把 Key 清除掉,但是 Value 由于线程还在存活,所以 Value 一直不会被回收,最后就会发生内存泄漏。[/scode]
- 用
jstat -gc pid
命令来看看程序的 GC 情况
假设这里已经指出了内存被线程占用了接近 50M 的内存,占用的对象就是 ThreadLocal。如果想详细的通过手动去分析的话,可以点击Histogram,查看最大的对象占用是谁,然后再分析它的引用关系,即可确定是谁导致的内存溢出。
死锁
死锁会导致耗尽线程资源,占用内存,表现就是内存占用升高,CPU 不一定会飙升(看场景决定),如果是直接 new 线程,会导致 JVM 内存被耗尽,报无法创建线程的错误,这也是体现了使用线程池的好处。
- 通过
ps -ef|grep java
命令找出 Java 进程 pid - 执行
jstack pid
即可出现 java 线程堆栈信息
DeadLock即为死锁(Mysql中的事务也有可能报这个)
线程频繁切换
上下文切换会导致将大量 CPU 时间浪费在寄存器、内核栈以及虚拟内存的保存和恢复上,导致系统整体性能下降。
当你发现系统的性能出现明显的下降时候,需要考虑是否发生了大量的线程上下文切换。
- 使用pidstat命令来看看 Java 进程内部的线程切换数据,执行
pidstat -p 87093 -w 1 10
将设采集信息为每秒切换 15 次左右,但正常情况下,应该是个位数或者小数。
可以初步推断 Java 线程开启过多,导致频繁上下文切换,从而影响了整体性能。
当前页面是本站的「Google AMP」版。查看和发表评论请点击:完整版 »